LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

SECOND SEMESTER - NOVEMBER 2015

MT 2502 - ALGEBRA AND CALCULUS - II

Date: 12/09/2015

Dept. No.

Max.: 100 Marks

Time : 09:00-12:00

PART-A

Answer ALL Questions $(10 \times 2 = 20)$

1.Evaluate $\int_{0}^{1} x(1-x)^4 dx$.

2. Write the formulae to find the area of surface of revolution in Cartesian and polar co- ordinates.

3. Evaluate $\int_0^1 \int_0^2 xy^2 dy dx$.

4. If u = x + y, y = uv, then show that $\frac{\partial(x,y)}{\partial(u,v)} = u$.

- 5. Define Beta and Gamma functions.
- 6. Prove that $\Gamma(n + 1) = n$ (n) if n > 0.
- 7. If $u_1 + u_2 + \dots + u_n + \dots$ is convergent prove that $\lim_{n \to \infty} u_n = 0$.
- 8. State D' Alembert's Ratio test.

9. Show that
$$\frac{\frac{1}{2} + \frac{1}{4!} + \frac{1}{6!} + \dots}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots} = \frac{e-1}{e+1}$$
.
10. If $y = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$, show that $x = y + \frac{y^2}{2!} + \frac{y^3}{3!} + \frac{y^4}{4!} + \dots$

PART- B

Answer any **FIVE** questions $(5 \times 8 = 40)$

11. Show that $\int_{0}^{\pi/4} \log(1 + \tan x) dx = \frac{\pi}{8} \log 2$.

- 12. A sphere is divided into two parts by a plane at a distance a/2 from the centre. Show that the ratio of the volumes of the two parts is 5 : 27.
- 13. Evaluate $x^2 dx dy$ over the area of the circle $x^2 + y^2 = a^2$.
- 14. Evaluate (i) $\int_{0}^{\infty} e^{-x^{2}} dx$. (ii) $\int_{0}^{\pi/2} \sqrt{\tan x} dx$ 15. Test the convergence of the series $\frac{1}{1\cdot 2\cdot 3} + \frac{3}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5} + \frac{7}{4\cdot 5\cdot 6} + \dots$
- 16. Show that the series $\sum \frac{\{(n+1)r\}^n}{n^{n+1}}$ is convergent if r < 1 and divergent if $r \ge 1$.
- 17. Sum the series $1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots$
- 18. If a, b, c denote three consecutive integers, prove that

$$\log b = \frac{1}{2}\log a + \frac{1}{2}\log c + \frac{1}{2ac+1} + \frac{1}{3} \cdot \frac{1}{(2ac+1)^3} + \dots$$

PART-C

Answer any **TWO** questions $(2 \times 20 = 40)$

19.(a) If
$$I_n = \int \sin^n x \, dx$$
 prove that $I_n = -\frac{\cos x \sin^{n-1} x}{n} + \frac{n-1}{n} I_{n-2}$.
Also evaluate $I_n = \int_0^{\pi/2} \sin^n x \, dx$. (12)

- (b) Find the surface area of the solid generated by rotating the cardioid
 - $r = a(1 + \cos\theta)$ about its line of symmetry. (8)
- 20. (a) Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dy \, dx$ and evaluate it. (12)
 - (b) By changing into polar coordinates, find the value of the integral

$$\sum_{0}^{2a} \sqrt{2ax - x^2} (x^2 + y^2) dy dx.$$
 (8)

21. (a)Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. (10)

(b) Find the limit of the sequence $\{a_n\}$ where $a_n = (1 + \frac{1}{n})^n$. (10)

22. (a).Sum the series $\sum_{n=0}^{\infty} \frac{5n+1}{(2n+1)!}$. (10)

(b) Show that
$$\frac{1}{1.3} + \frac{1}{2.5} + \frac{1}{3.7} + \dots = 2 - 2log2.$$
 (10)
